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Abstract

The lipase-catalyzed production of optically acti@®-flurbiprofen was carried out in a dispersion reaction-system induced by chiral
succinyl 3-cyclodextrin (s@-CD). The optimal reaction conditions were 500 mRS)-flurbiprofen ethyl ester §S-FEE), 600 units of
Candida rugosdipase per 1 mmol of,S)-FEE, and 1000 mM +CD at 37°C for 72 h. An extremely high enantiomeric excess of 0.98 and
conversion yield of 0.48 were achieved in the dispersed aqueous phase reaction system containin@<bibadded as a dispenser and
chiral selector. The inclusion complex formability of the immiscible substi@teahd R)-form of FEE with s@8-CD was compared using a
phase-solubility diagram, DSC, afd NMR. (S-Isomer formed a more stable and selective inclusion complex with chigaCf It was
hydrolyzed much more selectively by lipase fr@mrugosadue to the selective structural modification through inclusion complexation with
chiral siB-CD.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction To increase the resolution ability of lipase and esterase, var-
ious methods have been attempted, such as the modification
(R9-2-(3-Fluorod-biphenyl) phenyl-propionic acid of lipase using organic solvef,9], immobilization of li-
[(R9-flurbiprofen], which belongs to a family of 2- pase€[10], and utilization of surfactarjii1] and crown ether
arypropionic acid, is one of the well-known non-steroidal [12] to overcome the low solubility of immiscible substrate
anti-inflammatory drug (NSAID) that exhibits anti- rac-2-arypropionic acid.
inflammatory, analgesic, and antipyretic propertj@s?]. Cyclodextrin (CD) is a doughnut-shaped molecule with
The enantiopure §-enantiomer exhibits a stronger anti- a hydrophilic surface and hydrophobic inside, and it can
inflammatory activity as high as 30-fold higher compared form inclusion complexes with various immiscible hy-
to rac-flurbiprofen; however, flurbiprofen is still cur- drophobic guest molecules, including,§-FEE [13]. The
rently produced in large quantities as a racemic mixture physical-chemical properties of guest molecules can be sig-
[3]. nificantly modified through inclusion complexation. In our
Recently, the enzymatic resolution rafc-2-arypropionic previous works, the inclusion complexation of CDs was
acid into the optically pureS)-2-arypropionic acid using  applied for the lipase-catalyzed enzyme reaction in aque-
lipase (triacylglycerols ester hydrolases, EC 3.1.1.3) or es-ous reaction systems, such as the hydrolysis of immisci-
terase as the chiral catalyst has drawn much attefdier. ble triolein [14] and esterification between insoluble oleic
acid andn-butanol to form oleic acid butyl est¢t5]. Fur-
* Corresponding author. Tel.: +82 53 950 5384: fax: +82 53 959 8314,  thermore, the selective inclusion complexation of CDs and
E-mail addressleeyh@knu.ac.kr (Y.-H. Lee). their derivatives with optical isomer-pairs has also been ap-
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plied to the enantioselective hydrolysis of immiscitikS)-
ketoprofen ethyl ester into optically activ&){ketoprofen
[16].

In this work, the chiral CDs and their derivatives were ap-
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2.3. CDs and their derivatives

The CDs and their derivatives used as the dispenser
and chiral selectors wera-, B-, y-CDs, glucosex-CD,

plied in the lipase-catalyzed enantioselective hydrolysis of maltosee-CD, methylated3-CD, TRIMEB-CD, DIMEB-

(RS-FEE to the optically activeS)-flurbiprofen. The se-
lective inclusion complexation of immiscibl&f and R)-
FEE enantiomer with the chiral succingtCD (sy3-CD)

CD HP{-CD, succinylateg3-CD, carboxylethylated-
CD, acetylated3-CD, 2-hydroxyl ethylate®-CD, peracety-
lated3-CD, octenylsuccinylate@-CD, and phosphateg-

used as a dispenser or chiral selector was evaluated by &D (Cyclolab Ltd., Budapest, Hungary).
phase-solubility diagram, DSC, ad#i NMR. The kinetic

parameters of the lipase-catalyzed hydrolysis reaction of 2.4. Hydrolysis of (R,S)-flurbiprofen ethyl ester into
(9- and R)-FEE were compared to clarify the character- (S)-flurbiprofen in aqueous phase reaction system
istic of the enantioselective hydrolysis d®,§)-FEE in the containing chiral sg-CD

dispersed aqueous phase reaction system induced@y su
CD. A 50 mM of (R,9-FEE dissolved in a sodium phosphate
buffer (pH 7.0) was mixed with 200 mM g4CD, then soni-
cated for 1 min to form the inclusion complex. After adding
600 units of lipase fron€. rugosaper 1 mmol R,S-FEE, it
was hydrolyzed at 37C, 300 rpm for 72 h. The amount of
lipase, the mixing ratio betweeRS)-FEE and s@-CD, and
concentration ofRR,S)-FEE inclusion complex were changed
accordingly.

2. Materials and methods
2.1. Lipase

Lipase fromCandida rugosgSigma Co., St. Louis, USA)
was used as the catalyst for the enantioselective hydrolysis o )
of (RS-FEE. The activity was measured according to the 2.5. Phase-solubility diagram for (S)- and (R)-FEE with
method of Abramic et al. using triolein after a minor modi- sys-CD
fication[16,17] A 100 mM of triolein was emulsified by ul- S
trasonication for 1 min in 50 mM phosphate buffer (pH 7.0)  An excess amount of immisciblesk or (R)-FEE was
containing 0.3% gum Arabic, and then reacted with a cer- dissolved in 1 ml of a phosphate buffer (pH 7.0) contain-
tain amount of lipase of at 3T, 200 rpm for 30min. The  ing different amounts of §+CD for com.plexat|oln at 25C,
oleic acid produced was measured based on the calorimetric200 rpm for 12h. The§- or (R)-enantiomer dissolved in
method of Lowry and Tinsle[48], and one unit of lipase was the aqueous phase after complexation was separated using a

defined as the amount of lipase liberatingrhol of oleicacid ~ 0-45wm membrane, then th& and R)-FEE were extracted
per minute. from the inclusion complexes using a five-fold amount of

chloroform. The dissolvedy- and R)-FEE were analyzed
by HPLC to construct a phases-solubility diagram, and also
the stability constanti;) was calculated according to the
method of Higuchi—-Connoi21].

2.2. Synthesis of (R,S)-flurbiprofen ethyl ester and
separation of (R)-enantiomer from rac-mixture

The R,S)-FEE was synthesized from commercially avail-
able R S-flurbiprofen (Kolon Co., Seoul, Korea) using
an esterification reactiofiLl9], where 30% (w/v) of RS-
flurbiprofen was dissolved in ethanol and esterified @5
for 10h in the presence of 3% (w/v) sulfuric acid. The
resulting RS-FEE was vacuum evaporated, then freeze-
dried after washing with 1M sodium bicarbonate solu-
tion.

The ©-form isomer FEE was similarly synthesized

2.6. Inclusion complexation, DSC thermodiagram, and
HNMR

The inclusion complexation of}- or (R)-FEE with s-
CD was carried out according to the freeze-drying method
of Masashi et al[22] as follows. The §- or (R)-FEE dis-
solved in 35ml of a 50 mM phosphate buffer (pH 7.0) con-
taining the same molar volume of B«CD was mixed with
100l of a 28% aqueous ammonium solution at 200 rpm
from commercially availableg)-flurbiprofen (Sigma Co., St.  for 24 h. The resulting inclusion complexes were freeze-
Louis, USA). Meanwhile, the commercially unavailabig{ dried, then dried at room temperature after being washed
isomer was separated before esterification as follows from thethree times with ethyl ether to remove any residual impuri-
residual reaction mixture after the enantioselective hydroly- ties.
sis[20]. The ®R)-FEE and §-flurbiprofen extracted using The thermodynamic stability of the inclusion complexes
two-fold ethyl acetate were washed again three times usingwas evaluated by DSC (Seiko Co. Ltd., Tokyo, Japan) scan-
1M sodium bicarbonate to remove any contaminat®d (  ning at a speed of 1GC/min from 25 to 250 C. The structural
flurbiprofen up to a purity as high as 98%, as confirmed by features of the inclusion complexes were also analyzed by
HPLC. 500 MHz 1H NMR (Varian Inc., California, USA) at 25C
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after being dissolved in 0.5 mI{, then compared with the
structural features of the native){ and R)-FEE.

2.7. Kinetic evaluation of lipase-catalyzed hydrolysis of
(S)- or (R)-FEE in dispersed agueous phase reaction
system containing $4CD

The - or (R-FEE was hydrolyzed separately in a dis-
persed aqueous phase reaction system induced @CBu
after mixing 50 mM of §)- or (R)-FEE, 100 mM of sB-CD,
and 600 units of lipase/mmol substrates in 50 mM sodium
phosphate buffer (pH 7.0) at 3T, 300 rpm for 48 h to eval-
uate the kinetic parameters.

2.8. Analytical methods

The RS-FEE, ©-flurbiprofen, and R)-flurbiprofen
were measured by HPLC (Gilson Inc., France) under the
following conditions: column; RS-Tech TBB chiral col-
umn (0.46 cmx 25 cm), detection; UV (250 nm) spectrome-
ter, mobile phasenthexane/methyiert-butyl ether/acetate:
6/4/0.01), and flow rate 2.0 ml/min. The retention time for
(R9-FEE, ©-flurbiprofen, and R)-flurbiprofen was found
at 1.65, 3.49, and 4.77 min, respectively. The enantiomeric
excess (ee) representing the conten&pfiurbiprofen in the
reaction mixture and conversion yiel@)(from (R,9-FEE to
(9-flurbiprofen were calculated as follows.

Enantiomeric excess (ee)

= [(S)-profen— (R)-profen)/[(S)-profen + (R)-profen]

Conversionyield()
= [(S)-profen
+ (R)-profen)/[initial( R, S)-profenethylester]

3. Results and discussion

3.1. Selection of chiral CD derivatives for
enantioselective hydrolysis of (R,S)-flurbiprofen ethyl
ester

Different kinds of CD and their derivatives were applied
for the lipase-catalyzed enantioselective hydrolysis of im-
miscible R,9-FEE using an aqueous phase reaction system.
As shown inTable 1, the conversion yield and enantiomeric
excess of enantiopur&)flurbiprofen were influenced either
positively or negatively, mainly depending on the molecu-
lar structures of the CD and its derivative used as the dis-
perser and chiral selector. The conversion yield of optically
pure §-flurbiprofen increased after supplementing with
CD, B-CD, glucosea-CD, carboxylmethylate@®-CD and
succinylated3-CD, yet most preferably with §4CD from
0.041 to 0.362.
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Table 1
Effect of CD and CD derivatives on conversion yiel@) @nd enantiomeric
excess (ee)

Kind of CDs Conversion Enantiomeric
yield (C) excess (ee)

None 0.041 0.613
a-CD 0.104 0.776
B-CD 0.043 0.733
y-CD N.D. N.D.
Glucosea-CD 0.106 0.905
Maltosee-CD N.D. N.D.
Methylated8-CD 0.005 0.500
HP-3-CD 0.004 0.714
Succinylated3-CD 0.362 0.943
Carboxylmethylategg-CD 0.086 0.861
Acetylatedg-CD N.D. N.D.
2-Hydroxylethylated3-CD N.D. N.D.
TRIMEB-CD 0.006 0.212
DIMEB-CD 0.004 0.327
Peracetylate@-CD 0.006 0.710
Octenylsuccinylate@-CD 0.007 0.745
Phosphate@-CD N.D. N.D.

Reaction was carried out at 200 units of lipase/mmoRy$(-FEE, 50 mM
of (RS-FEE, 50 mM sodium phosphate buffer (pH 7.0), 300 rpmsGy7
and for 72 h, but adding 50 mM of CD and CD derivatives.

The enantiomeric excess representing the conter)of (
flurbiprofen in the reaction mixture also increased signifi-
cantly from 0.613 without any CD to 0.943 after supple-
menting with s@-CD. These increments may be influenced
by two factors: the size of the hydrophobic cavity in the na-
tive CDs and the functional groups in the CD derivatives,
such as glucose, carboxylmethyl, or succinyl, as described in
our previous work16].

3.2. Optimization of aqueous phase reaction system
containing chiral succinyB-cyclodextrin

The lipase-catalyzed production of optically acti®-(
flurbiprofen in an aqueous phase reaction system containing
chiral sig-CD was carried out under different reaction
conditions: the amount of lipase, the molar mixing ratio
of immiscible R 9-FEE to s@-CD, and the amount of
inclusion complex of immiscible R.S-FEE to s-CD.

As illustrated inFig. 1, as the amount of lipase froi@.
rugosa increased, the conversion yield and enantiomeric
excess increased proportionally up to 600 units lipase per
1 mmol of RS-FEE. The optimal molar mixing ratio for
inclusion complexation between immisciblg $-FEE and
chiral selector s@-CD was 1.0:2.0, respectively. Even at the
extremely high immiscible substrate concentration 500 mM
of (RS-FEE, a conversion yield as high as 0.48 could be
achieved.

Fig. 2compares the progress of the lipase-catalyzed enan-
tioselective hydrolysis of RS-FEE into ©-flurbiprofen
carried out with or without the chiral 84CD. The maximum
conversion of 0.48, approaching the maximum yield of 0.50,
was achieved after 96 h. In the aqueous reaction system
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Fig. 1. Effect of reaction conditions on conversion yie@) &nd enantiomeric excess (ee€) in lipase-catalyzed enantioselective hydroly&iS)dfurbiprofen
ethyl ester using succin@-CD as chiral selector. Reaction was carried out at 50 mM sodium phosphate buffer (pH 70),a8id 300 rpm for 72 h. (A)
Amount of lipase, (B) molar mixing ratio betweens€D and 50 mM R S)-FEE, (C) concentration oRS)-FEE inclusion complexation.

dispersed by the chiral oCD, a high enantiomeric excess
of up to 0.90 was also maintained from the initial reaction
stage, indicating a strong selectivity for ti§-form of FEE
rather than theR)-form, and it increased steadily up to 0.98.

3.3. Phase-solubility of immiscible (S)- and
(R)-flurbiprofen ethyl ester in aqueous phase reaction
system containing chiral 4CD

The phase-solubility of the immiscibl&¢ and R)-FEE
was compared using different amounts of the chir@€D,
as shown inFig. 3. The phase-solubility increased linearly
according to the A type of Higuchi—~Connorf21], although
the (9-type FEE dissolved twice as well. The stability con-
stants for §- and R)-FEE, defined as the slope/intercept
[1 —slope] in the phase-solubility diagrams, were also cal-
culated as 265 and 246M, respectively, indicating a higher
solubility and more stable inclusion complexation with the
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Fig. 2. Production profile of)-flurbiprofen in the agueous phase reaction
system containing chiral succing-CD. Reaction was carried out at 600
units of lipase/mmolR,S)-FEE, 500 MM R,S)-FEE, 1000 mM of sB-CD,

50 mM sodium phosphate buffer (pH 7.0), 37, and 300 rpm for 120 h.
Closed symbols®, 4A): dispersed reaction system induced by chirgd-su
CD; open symbols(),A): aqueous reaction system.

(9-enantiomef23,24] As such, the higher solubility ofj-

FEE in the aliquot phase seemed to provide more opportunity
for the lipase-catalyzed resolution to interact wig)-FEE
than with the less solublé&}-FEE.

3.4. DSC andH NMR analysis of inclusion complexes
of (S)- and (R)-flurbiprofen ethyl ester with&€D

In DSC thermodiagram of the inclusion complex &J(
FEE, the endothermic peak of raw guest molecHleHEE (a)
disappeared, and one endothermic peak @tGD at posi-
tion of 65.9°C (d) was observed. Meanwhile, in the inclusion
complex of R)-FEE (e), two peaks were observed, the orig-
inal (R)-FEE peak at the position of 1886 (b) and that of
su3-CD at 65.9°C (c) as shown iffrig. 4, providing a distinct
evidence of a stronger and more stable inclusion complexa-
tion with (S)-FEE compared tdR)-FEE[25]. A stronger and
more stable inclusion complexation can also be confirmed

Dissolved (s)- and (R)-FEE (mM)

0 5

10
suf-CD (mM)

15 20

Fig. 3. Phase-solubility diagram oS¥flurbiprofen ethyl ester andRj-
flurbiprofen ethyl ester according to the concentration of sucda@D.
(S-FEE @), (R-FEE (O).
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Table 2
a IH NMR chemical shifts and their changes of inclusion complexeSpf (
and R)-flurbiprofen ethyl ester with succin@-CD

H1 H2 H3 H4  H5  H6

b sue-CD 5089 3.685 3.985 3592 3756 3.882
sB-CD/(R-FEE 5.088 3.677 3.965 3.502 3.728 3.881
S3-CD/(S-FEE 5085 3.674 3.949 3588 3.711 3.880

AS (A) 0.004 0.011 0.036 0.004 0.045 0.002
¢ AS (B) 0.001 0.008 0.020 0.000 0.028 0.001
su3-CD; free succinyB-CD, (A); (sy3-CD) — (si3-CD/(S)-FEE), (B); (s-

d CD) — (s\p-CD/(R)-FEE).

< Endothem

Additionally, As values for H3 forming a ring near the
larger opening of the cavity are related to the stability of
e inclusion complex, while those for H5 forming a ring near the
smaller opening of the cavity indicate the penetration depth
of aromatic grou28]. (S-FEE showed larget s values for
H3 and H5, suggesting that it forms a more stable inclusion
complexwith an aromatic group d)-FEE, which penetrates

| I | | ' ' more deeply into the cavity.

0 50 100 150 200 250

Temperature ("C) 3.5. Kinetic analysis of enantioselective hydrolysis of

Fig. 4. DSC thermodiagrams of inclusion complexes §F (@nd R)- (S)- qr (R)'ﬂurblpmfen_ e.thyl ester in agueous phase
flurbiprofen ethyl ester with succingi-CD. (a) §-FEE, (b) R- FEE, (¢) ~ reaction system containing chiral StCD
su3-CD, (d) inclusion complexes of-FEE and (e) R)-FEE.
The immiscible substrates o) and R)-FEE were hy-

drolyzed separately in both an aqueous phase reaction system
by the fusion enthalpiesA(H), which were calculated to be and aqueous phase reaction system dispersed by the chiral
80.61 and 72.17 J/g, respectively. su3-CD (A), thenthe kinetic parameters were evaluated using

It is known that chemical shift changeAq) in the inner an integrated form of the simple Michaelis—Menten equation

protons H3 and H5 of a CD molecule can reflect the insertion (B), as depicted ifrig. 5. The lipase fronC. rugosacannot
of an aromatic group in hydrophobic guest molecules inside hydrolyze either§)- or (R)-form FEE well when chiral g8+
the macrocycle cavity, and can also be used as proof of in-CD was not added as a dispenser and chiral selector. How-
clusion complexatiof26,27] As shown inTable 2 the most ever, the enantioselectivity t®f¢form FEE was enhanced
remarkableAs values were absorbed by the internal protons significantly in the dispersed aqueous phase reaction system
H3 and H5 of the enantiomer-pairs, while the external protons containing s@-CD, but not to R)-FEE.

H1, H2, and H4 presented low&s values, providing again The Vy, values for §-FEE increased remarkably from
clear evidence of an inclusion complex interaction between 0.046 to 0.785 mM/h after the addition off®CD, whereas
the enantiomer pairs and thesCD. those for R)-FEE only increased slightly from 0.033 to
50 0.8
'g E‘ 40 .Z’c"‘ 0.6
e =
i?;‘-.g 30 E
- = ~ 04 L
o2 =
g8 20 9,
52 o oz |
@ & 10 2
5 n 0.0
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(A) Reaction time (h) (B) 11t In[S )[S] (h™)

Fig. 5. The kinetics of lipase-catalyzed hydrolysis on immiscible substBxte@d R)-FEE in the aqueous phase reaction system without and with chiral
su3-CD. Reaction was carried out at 600 units of lipase/mmol substrates, 5pMR)-FEE and, 100 mM of 8+CD, 50 mM sodium phosphate buffer
(pH 7.0), 37°C, and 300 rpm for 1-48 h. Lipase-catalyzed enantioselective hydrolysis reaSi¢EE + s3-CD (®); (S-FEE (O); (R)-FEE +s-CD (a);
(R-FEE ).
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0.098 mM/h. The apparemy, values for §-FEE also in-
creased from 5.2 10~ to 4.7x 10-2mM with su3-CD,
more significantly that those foR{-FEE from 4.8x 104
to 1.4x 10-3mM, indirectly indicating a steric hindrance to
accepting lipase fror@. rugosaafter inclusion complexation.
The enhanced enantioselectivity caused by the chifal su
CD may have been partially the result of two effects: the fa-
cilitated dispersion of the immiscible substrate in the aliquot
phase, and the selective inclusion complexationS)f 6r
(R)-FEE with the chiral sB-CD. Nonetheless, the enhancing
effect cannot be elucidated fully only by above reasons.
This may be more directly related to the different stereo-

scopic conformational changes of the inclusion complex of

each §- and R)-FEE with si8-CD, such as the different tilt

angle induced by steric repulsion and the attraction of the suc-
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